CYBERNETIC ARCHITECTURE
PROCESS and FORM
The Impact of Information Technology

By
Larry Rexton Barrow

Bachelor of Design, University of Florida, 1979
Masters of Arts in Architecture, University of Florida, 1981

Submitted in partial fulfillment of the requirements
For the degree of
Doctor of Design
At the Harvard Design School
November 2000

Copyright © 2000 by Larry Rexton Barrow

The author hereby grants Harvard University permission to reproduce and distribute copies of this thesis document, in whole or in part, for educational purposes.

Signature of the Author…………………………………………………………
Harvard Design School

Certified by……………………………………………………………………
Spiro N. Pollalis
Professor of Design Technology and Management
Thesis Committee, Chairman

Accepted by……………………………………………………………………
Spiro N. Pollalis
Professor of Design Technology and Management
Director, Doctor of Design Program
CYBERNETIC ARCHITECTURE
PROCESS and FORM

The Impact of Information Technology

A thesis presented

by

Larry Rexton Barrow

To

The Harvard Graduate School of Design
Advanced Studies Program

In partial fulfillment of the requirements
for the degree of
Doctor of Design
in the subject of
Architecture

Harvard University
Cambridge, Massachusetts

30 October 2000
© 2000 - Larry Rexton Barrow
All rights reserved.
THEESIS SUMMARY

CYBERNETIC ARCHITECTURE - PROCESS and FORM

The Impact of Information Technology

STATEMENT OF PURPOSE: To provide an analysis of the impact of technology on the design process and the practice of architecture; and the initiation of a theoretical framework for a broader consideration of IT strategies relative to emerging project delivery methodology.

TOPIC DESCRIPTION: Information technology and the architectural design process are evaluated from a historical evolutionary perspective. The role of the architect, communication networks and the interplay of technology is mapped as a comparative reference benchmark for the practice role choice of the contemporary architect.

RESEARCH METHODOLOGY: Qualitative exploratory normative using case study methodology.

EXPECTED CONTRIBUTION TO LITERATURE: The mapping of the evolution of the architect and the interplay of technology in the process of architecture in history. The proposal of the return to the pre-Renaissance vision of architecture where design and building are integral. A new economy Information Age digital environment "conceptual framework" for collaborative integrative design and building in the practice of architecture.
Walter Gropius, early twentieth century architectural theoretician, envisioned the architect as the *generalist integrative* design leader in an increasingly technological society of evolving complexity and specializations. Le Corbusier spoke of collaboration and unity in architecture; however, the necessary inter-organizational relationships and *in-formal* communication networks did not exist. Consequently, twentieth century architecture often resulted in liability and conflict for owners, contractors and architects.

The architect's transition from the 19\(^{th}\) to the 20\(^{th}\) century brought a vision for expansion of the role of the architect, resulting in clarity of purpose and adoption of corresponding *manufacturing technology*. However, the transition from the 20\(^{th}\) to the 21\(^{st}\) century occurred contrastingly, the role of the architect was diminishing as *project-leader and integrator*. *Information technology* (IT) is impacting architecture dramatically, both in *process* and *form*, so the question looms, will the 21\(^{st}\) century architect lead, or be led? How is IT empowering the architect and what is the effect on the design process? Is the historical *Master Builder* re-emerging as a dynamically networked and specialized team of design and construction specialists? Will the impact of IT result in increasing specialization and compressed time frames?
Failure to analyze the value-chain of the process of architecture, and appropriately respond to technology disruption, could result in a diminution of professional status for the architect.

In this dissertation, I propose the concept of Cybernetic Architecture and show six different architectural firm Case Studies that gives examples of how this emerging process is manifested in the practice of architecture. The proposed model suggests a reevaluation of the role of the architect, either as project-leader "integrative-generalist" or "design-specialist."

Six Case Studies, of variegated architectural firms, indicate some architects are using IT for empowerment as project leaders; thus, maintaining or regaining project leadership. Additionally, some architects are increasing value in the "process-chain" through differentiation and focus on an area of specialization. The traditional segmented linear design-bid-build process is diminishing, and collaborative integrative design is increasing. Information technology is driving bi-lateral knowledge exchange resulting in integration among discrete groups of owners, architects, engineers, builders, craftsmen and machines, resulting in a transformation of the traditional architectural discipline, what I term, Cybernetic Architecture.

Larry R. Barrow
Table of Contents

VOLUME I

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST of FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>GLOSSARY of TERMS</td>
<td>xvi</td>
</tr>
<tr>
<td>EPIGRAPHS</td>
<td>xviii</td>
</tr>
<tr>
<td>1-INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2-METHODOLOGY</td>
<td>18</td>
</tr>
<tr>
<td>3-CONTEXT AND BACKGROUND</td>
<td>23</td>
</tr>
<tr>
<td>IT and the Current Context</td>
<td></td>
</tr>
<tr>
<td>IT and the Future</td>
<td></td>
</tr>
<tr>
<td>IT in Architecture - Process and Product</td>
<td></td>
</tr>
<tr>
<td>IT and Disruption in Architecture</td>
<td></td>
</tr>
<tr>
<td>4-THE ARCHITECT AND TECHNOLOGY IN HISTORY</td>
<td>56</td>
</tr>
<tr>
<td>Architecture in the Ancient World - Egypt</td>
<td></td>
</tr>
<tr>
<td>Architecture in Greece</td>
<td></td>
</tr>
<tr>
<td>Roman Architecture</td>
<td></td>
</tr>
<tr>
<td>The Dark Ages - The Architect Relegated</td>
<td></td>
</tr>
<tr>
<td>Enlightenment - The Emergence of the Architect</td>
<td></td>
</tr>
<tr>
<td>The Early Renaissance</td>
<td></td>
</tr>
<tr>
<td>Dissolution of the Master Builder</td>
<td></td>
</tr>
<tr>
<td>Emerging Professionalism</td>
<td></td>
</tr>
<tr>
<td>The Late Renaissance in Italy - France - Spain</td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td>The Denigrated Master Builder</td>
<td></td>
</tr>
<tr>
<td>Collaboration and Organization</td>
<td></td>
</tr>
<tr>
<td>Knowledge and Informal Networks</td>
<td></td>
</tr>
<tr>
<td>The Birth of the Communication Gap</td>
<td></td>
</tr>
<tr>
<td>The Decomposed Architect</td>
<td></td>
</tr>
<tr>
<td>Professionalism</td>
<td></td>
</tr>
</tbody>
</table>
5-MANAGEMENT AND TECHNOLOGY

Technology Disruption
 Computing Technology Evolution
 Technology Migration
 Technology - Evolution vs. Revolution
Management Thinking - East and West
Technology - Man and Machine
The Organization as a System
 The Organizational Model and Process Change
 The Bigness Syndrome
Collaboration - Team Role Models
 The Integrator Role
 Process and Product
 The Hub Firm
Design-Build Project Delivery in Architecture
A Framework For The Architectural Design Process
Vision and Strategy
Summary

6-FINDINGS AND ANALYSIS
The Research Question, Hypothesis and Thesis
Proof Statements

Case Study Analysis

Case Study 1 - Margulies and Associates
Case Study 2 - Frank O'Gehry and Associates
Case Study 3 - Hillier Group
Case Study 4 - NBBJ Design
Case Study 5 - Rafael Viñoly Architects
Case Study 6 - glFORM

General Findings

Proof Statements - Case Study Correlation
IT and the Empowered Architect
IT Disruption - Process and Firm Vision
The Integrative-Generalist Role
The Evolution of the Architect

Technology Disruption

Informal Communication and Knowledge Networks
Cybernetic Architecture

Summary

7-CONCLUSION 271

VOLUME II

APPENDICES (under separate cover) 275

A1 - Research Questionnaires A & B 276
A2 - The Architect and Technology in History 285
A3 - Case Study 1 - Margulies and Associates 430
A4 - Case Study 2 - Frank O'Gehry and Associates 454
A5 - Case Study 3 - Hillier Group 551
A6 - Case Study 4 - NBBJ Design 565
A7 - Case Study 5 - Rafael Viñoly Architects 598
A8 - Case Study 6 - glFORM 618

BIBLIOGRAPHY 637
I wish to thank the many persons who have enabled my research and writing. First, thanks to the many teachers and professors who taught me and prepared the foundation for my career, especially Mrs. Webster. To former students, employers, clients, and business associates, thanks to each of you for your contributions, especially William B. Tumlin, Jr, Glenn Kurth, and Michael Berk. I am grateful to Miriam Truslow, the HDS Advanced Studies Program Administrator, for her encouragement and consistent guidance. I am most appreciative to Michelle Addington for her insights and instruction in my HDS Research and Methods thesis preparatory course. Also, I would like to thank Mark Mulligan, Virginia Beach and Hillary Brown for assistance and contribution of research data. I am eternally grateful to the Harvard Design School who made this research possible with a research grant.

I wish to acknowledge my HDS MDES classmates of 98, especially Raymond Abelin and Joyce Noe, for their friendship and encouragement. Thanks to my HDS faculty instructors who have provided me with a challenging academic environment and intellectual enrichment. The HDS Computer Resource Group has been invaluable in offering technical support and advise to my digital media learning and research efforts, a special thanks to Stephen Erwin, Beatrice Hernandez, Jeff Posser, Joe Balsama and Doug Cogger. I have enjoyed stimulating conversation and digital experimentation research with my cohorts in the HDS Center for Design Informatics (CDI), a special thanks to Michael
Schroeder and Monica Tovar. I am indebted to MdesS and DDes collaborative research partners June Hau-Hou, Andreas Savides, Pablo Vaggione, Francisco Gonzalez-Pulido, Kevin Rothoroe and Katie Cacace. To the Teaching Assistants (TA), Fellows (TF), and instructors who I have been privileged to meet and work with at the HDS, thanks for your help and assistance, especially, Anna Stefanidou, Mona Ying, Tina Tolis, Yong Gib Yun, Martin Bechthold, Mark Mulligan, Kimo Griggs and Dan Schodek. I will forever value my friendship and intellectual exchange here at the HDS with my DDes classmates George Arbid, Martin Bechthold, Graciela Fortin-Magana, Rick Huibreghts, Heui-Jong Kwak, Surapong Lertsithichai, Yue Wah and Yong Gib Yun. A gracious thanks to Christine Smith for her consultancy and editing of my review of the architect in history.

I am indebted to the Rick Huibregts and Jaap van der Wijst for their stimulating brainstorming sessions at the early phases of this research, as well as the contribution of data regarding project management and process.

I am forever indebted to my advisory committee, for their time, advice, and guidance, Spiro N. Pollalis, Kermit Baker, Jeffrey Huang, and Karen Stephenson, especially my Chairperson Spiro Pollalis, who has been both friend and mentor, providing consistent and timely in-sight and wisdom. I am very grateful for the encouragement of our children, Amanda and Brenan, and the patience and wisdom of my wonderful wife, Melva.
DEDICATION

To

Mom and Dad

Melva, Amanda, and Brenan

and all

my Relations
LIST OF FIGURES

Figure 2-1 Case Study Architectural Firms
Figure 2-2 Research Methodology
Figure 3-1 Gross Domestic Product
Figure 3-2 Internet Host Counts
Figure 3-3 US Online Ad Spending
Figure 3-4 ECommerce
Figure 3-5 Technology Spending per Employee
Figure 3-6 Firm IT Budget Allocation
Figure 3-7 Firms with Web Sites
Figure 3-8 Firms Use of IT for Collaboration
Figure 3-9 Moore’s Law
Figure 3-10 Computer Processing Speed and Physical Size
Figure 3-11 Modern Movement Architecture
Figure 3-12 "Notes On The Synthesis of Form" - Christopher Alexander
Figure 3-13 The Evolution of IT in the FIRM
Figure 3-14 Project Delivery in Architecture (1985 - 2015)
Figure 3-15 The Electronic Marketplace - IOS - Jeffrey Huang-1997- HGSD
Figure 3-16 Product Design Examples - "Blob" Form
Figure 3-17 Ford Motor - Electric Car
Figure 3-18 Auto - Form and Assemblage - (Performance)
Figure 3-19 Form and Lighting - Burj Al Arab/Jumeirah Beach Resort
Figure 3-20 Performance Simulation in Architecture - Menara Umno
Figure 3-21 Church of the Year 2000 - CFD Analysis - Richard Meier
Figure 3-22 St. Martins Lane Hotel - London - Phillippie Starck
Figure 3-23 Form "Thinking"
Figure 4-1 The Great Pyramids
Figure 4-2 The Parthenon
Figure 4-3 The Coliseum
Figure 4-4 Siena Cathedral - Designed by Giovanni Pisano - ca. 1284
Figure 4-4 Pre-Renaissance - Architecture Characteristics
Figure 4-5 Process Network: Pre-Renaissance Era - Hierarchical
Figure 4-6 Process Network: Pre-Renaissance Era - Communication
Figure 4-7 Composition of the Architect: Pre-Renaissance Era
Figure 4-8 Pre-Renaissance Architecture - Process Factors
Figure 4-9 Saint Peter's Cathedral
Figure 4-10 Dissolution of the Master Builder
Figure 4-11 Villa Rotunda - Palladio
Figure 4-13 Renaissance Architecture Characteristics
Figure 4-14 The Emerging Professional Architect
Figure 4-15 Late Renaissance Architecture - Process Factors
Figure 4-16 The Louvre
Figure 4-17 Buckingham Palace
Figure 4-18 Industrial Era - Architecture Characteristics
Figure 4-19 The Emerging Professional Architect - England
Figure 4-20 England Architecture - Process Factors
Figure 4-21 The Chrysler Building - NY
Figure 4-22 Architecture Characteristics in America
Figure 4-23 Architecture Process Model - USA - The Modern Era
Figure 4-24 Social Status of the Architect in History
Figure 4-25 Technology and Communication - Pre-Renaissance
Figure 4-26 Technology and Communication - Pre-Industrial Era
Figure 4-27 Technology and Communication - The Industrial Era
Figure 4-28 Process Specialization & Integration
Figure 4-29 The Architect's Clients in History
Figure 4-30 The Integration Interface-The Master Builder-Modern Architect
Figure 5-1 Organizational Learning
Figure 5-2 Organizational Process - Hierarchical vs. Collective
Figure 5-3 The Evolution of Organizational Forms
Figure 5-4 Ford Motor Assembly Line
Figure 5-5 Manufacturing Model - Traditional "Event-In-Series" Approach
Figure 5-6 Manufacturing Model - Interactive Approach
Figure 5-7 BIG Organizations - Decomposed to SMALL Micro-Components
Figure 5-8 Process and Product Interface
Figure 5-9 Design-Build Project Delivery Varieties
Figure 6-1 Case Study Firms
Figure 6-2 Margulies and Associates - Interior
Figure 6-3 Decomposed Master Builder - Margulies & Associates
Figure 6-4 Project Manager - Project and Team Hub
Figure 6-5 Formal and Informal Project Team Network
Figure 6-6 Margulies - The Hub Firm & Digital Control
Figure 6-7 FOGA - Disney and Bilbao
Figure 6-8 Decomposed Master Builder - FOGA - Disney
Figure 6-9 Decomposed Master Builder - FOGA - Bilbao
Figure 6-10 FOGA - Bilbao - IT Utilization - Guggenheim Bilbao Museum
Figure 6-11 Collaborating Contractors in the Architecture Process
Figure 6-12 Bilbao Communication Network
Figure 6-13 Comparative Analysis - FOGA - Disney & Bilbao
Figure 6-14 Size - FOGA - Disney & Bilbao
Figure 6-15 Time - FOGA - Disney & Bilbao
Figure 6-16 Cost - FOGA - Disney & Bilbao
Figure 6-17 Process Methodology - FOGA - Disney & Bilbao
Figure 6-18 Process Control - Disney Concert Hall
Figure 6-19 Design Process Criterion - FOGA - Disney
Figure 6-20 Process Control - Bilbao Guggenheim Museum
Figure 6-21 Design Process Criterion - FOGA - Bilbao
Figure 6-22 Process Organization Chart - FOGA - Disney
Figure 6-23 Process Organization Chart - FOGA - Bilbao
Figure 6-24 LVMH Building - Mid-town Manhattan - Hillier / Portzamparc
Figure 6-25 Decomposed Master Builder - Hillier - LVMH
Figure 6-26 Staples Center - NBBJ
Figure 6-27 Decomposed Master Builder - NBBJ - Staples Center
Figure 6-28 Criminal Court Complex - Performing Arts Complex - Viòoly
Figure 6-29 Decomposed Master Builder - Rafael Viòoly Architects PC
Figure 6-30 H2 House - Presbyterian Church - NY - glFORM
Figure 6-31 Decomposed Master Builder - glFORM
Figure 6-32 Proof Statements - Case Study Correlation
Figure 6-33 Architectural Firm CURRENT Role per Research Findings
Figure 6-34 Architectural Firm PREFERRED Role per Research Findings
Figure 6-35 Architecture Process Model - Traditional Linear "Event-In-Series"
Figure 6-36 Architecture Process Model - "Interactive Approach"
Figure 6-37 Integrative Design Approach - "Wholistic" Life-Cycle
Figure 6-38 Process Change in Architecture - Fast-Track Project Delivery
Figure 6-39 Task - Time - Management Interface
Figure 6-40 Client's Design Criterion Variation
Figure 6-41 Design Process Criterion - Project Leadership
Figure 6-42 The Evolution of the Architect
Figure 6-43 Technology Disruption: Pre-Renaissance
Figure 6-44 Technology Disruption: Renaissance → Pre-Industrial
Figure 6-45 Technology Disruption: Industrial
Figure 6-46 Technology Disruption: Digital Information Age
Figure 6-47 Technology Disruption: Cybernetic Architecture
Figure 6-48 IT Migration in Architecture - Case Study Firms
Figure 6-49 Informal Knowledge Networks - Netform, Inc.
Figure 6-50 Formal Communication in Architecture - Industrial Era
Figure 6-51 Cybernetic Architecture - Designer - Craftsman - Machine
Figure 6-52 Communication in Architecture (3000 -1500 AD)
Figure 6-53 Cybernetic Architecture: Designer - Craftsman - Machine
Glossary of Terms

architect:
One who designs and supervises the construction of buildings or other large structures.

architecture:
The art and science of designing and erecting buildings.

artificial
Made by human beings; produced rather than natural.

cybernetics:
The theoretical study of communication and control processes in --- systems, especially the comparison of these processes in biological and artificial systems.†

design:
To conceive or fashion in the mind; invent.

ethical
A set of principles of right conduct. A theory or a system of moral values.

fiduciary:
Of or relating to a holding of something in trust for another.

form
The shape and structure of an object. The essence of something.

hypothesis
A tentative explanation that accounts for a set of facts and can be tested by further investigation; a theory.

information
Knowledge derived from study, experience, or instruction. Knowledge of a specific event or situation; intelligence. A collection of facts or data. The act of informing or the condition of being informed; communication of knowledge.

process
A series of actions, changes, or functions bringing about a result:

professional
Conforming to the standards of a profession: professional ethics.

proposition
A plan suggested for acceptance; a proposal.

service
Work or duties performed for a superior. The occupation or duties of a servant.

system
A group of interacting, interrelated, or interdependent elements forming a complex whole.

technology
The application of science, especially to industrial or commercial objectives.

thesis
A proposition that is maintained by argument.
EPIGRAPHS

You must turn and face the tiger to learn it is made of paper.

Zen saying

A problem adequately stated is a problem well on its way to being solved.

R. Buckminster Fuller

Most of the shadows of this life are caused by our standing in our own sunshine.

Ralph Waldo Emerson

In order that a man be capable of straightening himself out, he must find his way from casual, accessory elements of his existence; he must find his own self, not the trivial ego of the egotistic individual, but the deeper self of the person living in a relationship to the world.

Martin Buber